3.2 Notes & Examples

Rolle's Theorem & the MVT

1. Do now as a warm Up:

- 1. Plot 2 points that have the same y value.
- 2. Connect those points with a graph that is continuous and differentiable. (Your graph should be smooth and have no jumps, breaks, holes, gaps, nor vertical asymptotes.)
- 3. Count the number of places between your original 2 points that would have a horizontal tangent line.
- 4. Repeat steps 1 to 3 until you think you could make a conjecture about what is always true in this situation.

	•							•	t										
•	• •	•			•			• -	t	•	•		•	•	•	•	•	•	
•	• •	•		•				• -	t	•	•		•	•	•	•	•	•	
									Ť										
									Ι										
									Γ										
									L										
									L										
									Ļ										
				_				-	-			_		_			<u> </u>		-
⊢—																		⊢→	
⊢								· -										├─ ▶	
	 				 	· · ·		· - · -	-	• • •								├─ ►	
	· ·				· ·	 		· -	-									↓ →	-
	· · ·	•			· ·	· · ·		· - · -	-									↓ →	-
	· · ·	• •			· ·	· · ·		· - · - · -	-	• • • •					•	• • •	• • •	↓ →	-
	· · ·	· ·			· ·	· · ·		· -		• • • •	• • •			•	•	•	• • • •	↓ ▶	• • • •
	· · ·					· · · · · · · · · · · · · · · · · · ·	•	· - · -		•				• • • •	•	· · · · · · · · · · · · · · · · · · ·	• • • • •	↓ →	- - - -
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	•	· -	-	· · ·			•			· · ·	· · · · · · · · · · · · · · · · · · ·	↓ →	-

Rolle's Theorem (circa 1691):	
Let f be a function on $[a, b]$.	
IF	
1	
2	
3	
THEN there is at least one number $x = c$ in where	

- 2. Examples of Rolle's Thm
 - (a) Consider $f(x) = x^2 2x$ for the interval [0, 2]. Does Rolle's Thm. apply? Justify. If it applies, find a value of c where f'(c) = 0

(b) Consider $f(x) = x^2 - 2x$ for the interval [-2, 2]. Determine if Rolle's Theorem applies. If so, find the value(s) of c guaranteed by the theorem.

(c) Let $f(x) = x^2 - 3x + 2$ on [1, 2]. If Rolle's Theorem can be applied, find all the values of c guaranteed by the theorem.

(d) Consider the function $f(x) = |\sin x|$. f(-1) = f(1), but there is no number c in (-1, 1) where f'(c) = 0. Why does this not contradict Rolle's Thm?

Mean Value Theorem

- 3. Now try this:
 - 1. Sketch a graph that is continuous and differentiable between any 2 points. (Your graph should be smooth and have no jumps, breaks, holes, gaps, nor vertical asymptotes.)
 - 2. Connect your endpoints with a line
 - 3. Count the number of places between your original 2 points that would have a tangent line parallel to the line you drew in step 2.
 - 4. Repeat steps 1 to 3 until you think you could make a conjecture about what is always true in this situation.

									Î.										
									Г										
•	•	•	•	•	•	•	•	• •	t	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	• -	Ł	•	•	•	•	•	•	•	•	•	·
									Ļ										
•	•	•		•	•			• •	Ť		•	•	•	•	•		•	•	
•	•	•	•	•	•	•	•	• •	t	•	•	•	•	•	•	•	•	•	
			•			,		• -	Ł										÷
									L										
•	•	•	•	•	•	•	•	• •	t	•	•	•	•	•	•	•	•	•	Ċ
 -	-	_	<u> </u>	-	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			1	1	1	1	1	1.	-
									Ļ										
									╞										
•		•	•	•	•	•	•	· -		•					•				
•	•	• • •		•	•		• • •	· -	+	• • •				•					•
•	•	•	•	•	•	•	•	· ·		•			•	•	•	•			
•	•	•	•	•	•	•	•	· ·	+	•	•		•	•	•	•	•		
•	•	•	•	•	•	•	•	· ·		•	•	•	•	•	•	•	•	•	• • • •
•	•	•	•	•	•	•	•	· · ·		•	•	•	•	•	•	•		· · · · · · · · · · · · · · · · · · ·	
•	•	•	•	•	•	•	•	· · ·		•		•	•	•	• • • •	•	•	· · · · · · · · · · · · · · · · · · ·	
•	•		•	•	•	•	•	· · · · · · · · · · · · · · · · · · ·		•	•		•	•	•		· · · ·		
			•	•		•	•	•	+	•	•	•		• • • • • •	• • • • • •		• • • • • • • •		

Parmeshwara Nambudiri (1380-1460, Kerela India) and Michel Rolle (1652-1719, Ambert France) proposed this idea as well, but in a less generalized form. Years after Rolle, French mathematician Joseph-Louis Lagrange (1736 - 1813) loosened up the qualifications of Rolle's hypothesis, and came up with a much broader and useful result. Later, another French mathematician Augustin-Louis Cauchy (1789-1857) generalized the theorem for 2 functions.

Theorem (MVT):	
tion on $[a, b]$.	
at least one number $x = c$ in	where (4 ways to say the conclusion)
	Fheorem (MVT): tion on $[a, b]$. at least one number $x = c$ in

4. Determine if the MVT applies to $f(x) = x^3 - x$ on [0,2]. If so, find the value(s) guaranteed by the theorem.

- 5. With the help of your calculator's ability to graphically find zeros, determine all the numbers c which satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3 + 2x^2 x$ on [-1, 2]. (It's important to remember the interval in which you're working. Remember that both Rolle's Theorem and the MVT guarantee at least one value strictly on the OPEN interval).
- 6. Determine if the MVT applies to $f(x) = x^3 3x^2 + 2x$ on [0,3]. If so, find the value(s) guaranteed by the theorem.
- 7. For the following functions, determine if the MVT applies. If so, find the value of c guaranteed by the theorem. If not, specifically state why the theorem does not apply.

(a)
$$f(x) = \frac{x+5}{x-1}$$
 on $[-3,5]$

(b)
$$g(x) = x^{2/3}$$
 on $[-3,3]$